Chapter Review

1. Calculate. For example:
a) $12 \frac{3}{8}+7 \frac{3}{4}=\underline{12^{\frac{3}{8}}+7 \frac{6}{8}}$ $=20^{\frac{1}{8}}$
c) $9 \frac{7}{16}-2 \frac{7}{8}=8 \frac{23}{16}-2 \frac{14}{16}$ $=6 \frac{9}{16}$
b) $\frac{1}{6} \times 18 \frac{3}{4}=\underline{3+\frac{3}{24}}$

$$
=3^{\frac{1}{8}}
$$

d) $8 \frac{3}{4} \div \frac{1}{2}=\underline{\frac{35}{4} \div \frac{2}{4}}$

$$
=17^{\frac{1}{2}}
$$

2. How many $8 \frac{1}{4}$ in. lengths can Nathan cut from a 25 in. pipe?

$$
\text { e.g., } \begin{aligned}
25 \div 8 \frac{1}{4} & =25 \times \frac{4}{33} \\
& =\frac{100}{33}, \text { or } 3 \frac{1}{33}
\end{aligned}
$$

Nathan can cut 3 pieces $8 \frac{1}{4}$ in. long from a 25 in. pipe.
3. Jessica buys 42.3 L of gas at a cost of $\$ 1.09$ per litre. How much does it cost for the gas?
e.9., $42.3 \mathrm{~L} \times \$ 1.09 / \mathrm{L}=\$ 46.11$

The gas costs \$46.11.

Hint

$1 \mathrm{~km} \doteq 0.62 \mathrm{mi}$
$1 \mathrm{mi}=1760 \mathrm{yd}$
$1 \mathrm{mi}=1.61 \mathrm{~km}$
4. On Saturday, Adam walked 0.75 km from his house to a golf course. He played the 7185 yd course and then walked home.
a) How far did Adam walk to and from the golf course? e.9., $0.75 \mathrm{~km}+0.75 \mathrm{~km}=1.5 \mathrm{~km}$
b) How far did Adam walk altogether?
e.g., $1 \mathrm{~km} \doteq 0.62 \mathrm{mi}$ so $1.5 \mathrm{~km} \doteq 0.93 \mathrm{mi}$
$1 \mathrm{mi}=1760 \mathrm{yd}$, so $7185 \mathrm{yd} \div 1760 \mathrm{yd} / \mathrm{mi}=4.08 \mathrm{mi}$
$4.08 \mathrm{mi}+0.93 \mathrm{mi}=5.01 \mathrm{mi} \quad$ Adam walked about 5 miles.
c) What units did you use for your answer in Part b)? Why? e.g., miles; I didn't use yards because I would have had to work with larger numbers in the solution. But I could have changed 4.08 miles to kilometres and used those instead.
5. The triangle highlighted in this bridge design has equal sides. If the perimeter is 17.85 m , how long is each side?
e.g., $17.85 \mathrm{~m} \div 3=5.95 \mathrm{~m}$

Each side is 5.95 m long.
6. Kiana is making a display for a trade show. She plans to put a decorative border around
 the display board that is 60 in . tall and 52 in. wide. Borders come in packages of 35 feet. About how much border will be left over from one package?
e.g., Perimeter $=60 \mathrm{in} .+60 \mathrm{in} .+52 \mathrm{in} .+52 \mathrm{in}$.

$$
=224 \mathrm{in}
$$

$12 \mathrm{in} .=1 \mathrm{ft}$
$224 \mathrm{in} . \div 12 \mathrm{in} . / \mathrm{ft}=18.666 \ldots \mathrm{ft}$
$35 \mathrm{ft}-18.666 \ldots \mathrm{ft}=16.333 \ldots \mathrm{ft}$
About $16 \frac{1}{3} \mathrm{ft}$ of border will be left over.
7. A cylinder-shaped grain bin has a circular base with a diameter of 44 ft .
a) What is the circumference of the bin in feet?

Circumference $=\pi \times$ diameter

$$
\begin{aligned}
& =\pi \times 44 \mathrm{ft} \\
& =138.230 \ldots \mathrm{ft}
\end{aligned}
$$

The circumference of the bin is about 138.23 ft .

diameter $=44 \mathrm{ft}$
b) What is the circumference of the bin in yards?
e.9., $3 \mathrm{ft}=1 \mathrm{yd}$
138.230... $\mathrm{ft} \div 3 \mathrm{ft} / \mathrm{yd}=46.076 \ldots$ yd

The circumference of the bin is about 46 yd .
c) What is the circumference of the bin in metres?

Hint

Use the charts inside the back cover.
e.9., $1 \mathrm{yd} \doteq 0.91 \mathrm{~m}$
$46 \mathrm{yd} \times 0.91 \mathrm{~m} / \mathrm{yd} \doteq 41.86 \mathrm{~m}$
The circumference of the bin is about 41.86 m .

