Mid-Chapter Review

BATT MAN

- **1.** Calculate each side length in $\triangle ABC$, to one decimal place.
 - b) side AC a) side BC sin 63° = $\frac{BC}{15}$ AC^2 + 13.4² = 15² $15 \times \sin 63^\circ = BC$ $AC^2 = 15^2 - 13.4^2$ 13.3650... = BC $AC = \sqrt{225 - 179.56}$ AC = 6.740..., or about 6.7 cm $BC \doteq 13.4$ cm

1.5 x

- a) What two other sets of dimensions are possible? 6 ft by 4 ft, or e.g., 12 ft by 8 ft or 4.5 m by 3 m
- b) Samuel is putting a divider on the diagonal to make two spaces in a 6 ft by 4 ft box. He said the diagonal should be $7\frac{1}{2}$ ft long. Will this fit? Explain. No, it's too long. $6^2 + 4^2 = 36 + 16$, or 52 $c^2 = 52$, so $c = \sqrt{52}$, or 7.211... The diagonal is 7.2 ft long.

attached 3 m from the top of the pole. h a) What is the height of the pole, to the

51°

- b) The other wire is attached on the ground, 8.6 m from the
- pole. What is the length of this wire? (Show two solutions.)

e.g., sin $51^\circ = \frac{11}{2}$ e.g., $c^2 = 11^2 + 8.6^2$ $c = \sqrt{121 + 73.96}$ $a \ge \sin 51^\circ = 11$ $c = \sqrt{194.96}$, or 13.9628... $a = \frac{11}{\sin 51^\circ}$ a = 14.1543...

The wire is about 14 m long.