Mid-Chapter Review

1. Calculate each side length in $\triangle A B C$, to one decimal place.
a) side $B C$
$\sin 63^{\circ}=\frac{B C}{15}$
b) side $A C$
$A C^{2}+13.4^{2}=15^{2}$
$15 \times \sin 63^{\circ}=B C$
$A C^{2}=15^{2}-13.4^{2}$
13.3650... = $B C$

$$
A C=\sqrt{225-179.56}
$$

$B C \doteq 13.4 \mathrm{~cm}$

$$
A C=6.740 \ldots, \text { or about } 6.7 \mathrm{~cm}
$$

2. The length of a rectangular box must be 1.5 times its width.
a) What two other sets of dimensions are possible? 6 ft by 4 ft , or e.g., 12 ft by 8 ft or 4.5 m by 3 m

b) Samuel is putting a divider on the diagonal to make two spaces in a 6 ft by 4 ft box. He said the diagonal should be $7 \frac{1}{2} \mathrm{ft}$ long. Will this fit? Explain.
No, it's too long. $6^{2}+4^{2}=36+16$, or 52
$c^{2}=52$, so $c=\sqrt{52}$, or 7.211... The diagonal is 7.2 ft long.
3. Two guy wires, of unequal lengths, keep this flagpole vertical. Both wires are attached 3 m from the top of the pole.
a) What is the height of the pole, to the nearest metre?
$\sin 58^{\circ}=\frac{h}{13}$

$13 \times \sin 58^{\circ}=h$
$11.0246 \ldots=h$ The height is about $11+3=14 \mathrm{~m}$.
b) The other wire is attached on the ground, 8.6 m from the pole. What is the length of this wire? (Show two solutions.)

$$
\begin{array}{ll}
\text { e.g., } c^{2}=11^{2}+8.6^{2} & \text { e.g., } \sin 51^{\circ}=\frac{11}{a} \\
c=\sqrt{121+73.96} & a \times \sin 51^{\circ}=11 \\
c=\sqrt{194.96}, \text { or } 13.9628 \ldots & a=\frac{11}{\sin 51^{\circ}} \\
& a=14.1543 \ldots
\end{array}
$$

The wire is about 14 m long.

