Mid-Chapter Review

1. The world's largest raisin box was built by students in

California. The box is a rectangular prism 12 ft high, 8 ft wide, and 4 ft deep. What is its surface area?

$$
\text { e.g., } \begin{aligned}
S A & =2(12 \mathrm{ft} \times 4 \mathrm{ft})+2(8 \mathrm{ft} \times 4 \mathrm{ft})+2(12 \mathrm{ft} \times 8 \mathrm{ft}) \\
& =2(48 \mathrm{sq} \mathrm{ft})+2(32 \mathrm{sq} \mathrm{ft})+2(96 \mathrm{sq} \mathrm{ft}), \text { or } 352 \mathrm{sq} \mathrm{ft}
\end{aligned}
$$

The surface area of the giant raisin box is 352 sq ft .
2. These two steel rods are to be case-hardened. The process will cost more for the rod with greater surface area. Which rod will cost more to case-harden?

e.g., $S A=2$ (base area) $+($ lateral area)

$$
=2 \times\left[\frac{1}{2}(6 \mathrm{in} .)(4 \mathrm{in} .)\right]+(6 \mathrm{in} .+5 \mathrm{in} .+5 \mathrm{in} .)(15 \mathrm{in} .)
$$

$$
=264 \mathrm{sq} \mathrm{in} .
$$

e.g., $S A=2$ (base area) $+($ lateral area)

$$
=2 \pi(2.5 \mathrm{in} .)^{2}+2 \pi(2.5 \mathrm{in} .)(15.0 \mathrm{in} .)
$$

$$
=274.889 \ldots \mathrm{sq} \mathrm{in} .
$$

The cylinder has more surface area. So it will cost more.
3. Tim works at a chocolate store. The store sells candy in two types of gift boxes. One is a square-based pyramid. The other is a cone. The one that uses less cardboard costs less to make. Both boxes have a slant height of 13.5 cm . Which box costs less to make?

e.g., $S A=(12 \mathrm{~cm})(12 \mathrm{~cm})$
$+4 \times\left[\frac{1}{2}(12 \mathrm{~cm})(13.5 \mathrm{~cm})\right]$
$=468 \mathrm{~cm}^{2}$

$S A=\pi(6 \mathrm{~cm})^{2}+\pi(6 \mathrm{~cm})(13.5 \mathrm{~cm})$
$=367.566 \ldots \mathrm{~cm}^{2}$

The cone box has less surface area. So it costs less to make.

