Mid-Chapter Review

1. Determine the volume of each object.

$$
\begin{aligned}
V & =\frac{1}{3}\left(A_{\text {base }}\right)(h) \\
& =\frac{1}{3}(15 \mathrm{~cm})^{2}(20 \mathrm{~cm}) \\
& =1500 \mathrm{~cm}^{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
V= & \frac{\pi r^{2} h}{3} \\
= & \frac{\pi(6 \mathrm{in} .)^{2}(10 \mathrm{in.})}{3} \\
= & 376.991 \ldots \mathrm{cu} \mathrm{in..,} \\
& \quad \text { or about } 377 \mathrm{cu} \mathrm{in.}
\end{aligned}
$$

c)

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi(5 \mathrm{~cm})^{3} \\
& =523.598 \ldots \mathrm{~cm}^{3},
\end{aligned}
$$

$$
\text { or about } 524 \mathrm{~cm}^{3}
$$

2. Describe two ways to estimate the volume of an object.
e.9., I could use a referent. I could estimate the object's measurements and use the appropriate formula to determine its volume using those measurements.
3. a) Daniel is a carpenter.

He is framing a house with interior dimensions as shown. It costs
 about $\$ 1.95 / \mathrm{m}^{3}$ to heat a home for a year. Estimate the heating cost for a year.

$$
\text { e.g., } \begin{aligned}
V & =l w h_{\text {prism }}+\frac{1}{3}\left(A_{\text {base }}\right)\left(h_{\text {prramid }}\right) \\
& =(10 \mathrm{~m})(10 \mathrm{~m})(2.32 \mathrm{~m})+\frac{1}{3}(10 \mathrm{~m})(10 \mathrm{~m})(2.04 \mathrm{~m}) \\
& =300 \mathrm{~m}^{3} \\
\text { Cost: } & 300 \mathrm{~m}^{3} \times \$ 1.95 / \mathrm{m}^{3}=\$ 585
\end{aligned}
$$

The heating cost is about $\$ 585$ for a year.
b) If Daniel doubled the length and width of the house, would the heating cost double?

No. e.g., If Daniel doubled the length and width, the volume would be 4 times the original heating. So the heating cost would be 4 times the original heating cost.

