Chapter Review

1. Calculate the volume of each object.

2. This cylindrical storage tank has a volume of 750.7 m³. The tank has a height of 11.8 m. What is its radius to the nearest tenth of a metre?

- 10-10

11.8 m

e.g.,
$$V = \pi r^2 h$$

750.7 m³ = πr^2 (11.8 m)
750.7 m³ = (37.070... m)r²
750.7 m³ ÷ 37.070... m = (37.070... m)r² ÷ 37.070... m
20.250... m² = r²
 $\sqrt{20.250...} = r$
4.500... = r

The radius of the tank is 4.5 m, to the nearest tenth of a metre.

3. Determine the volume of the square pyramid.

4. Create a problem where you need to determine the volume of an object measured in cubic feet.

e.g., Determine the volume of a stack of solid bricks that is 4 ft tall, 2 ft wide, and 3 ft long.

5. Determine the volume of each composite object.

6. Martina says that if you triple the inner radius of a cylindrical container and keep the height the same, its capacity will also triple. Is she correct? Use an example in your explanation.

No. e.g., Its capacity will increase by a factor of 9. $V_{\text{original}} = \pi r^2 h$ $V_{\text{new}} = \pi (3r)^2 h$ $= 9\pi r^2 h$

7. A spherical gas storage tank has an inner radius of 10 m. Determine its capacity, to the nearest litre.

e.g.,
$$V = \frac{4}{3}\pi r^3$$

= $\frac{4}{3}\pi (1000 \text{ cm})^3$
= 4188790205 cm³, or 4188790205 mL
4188790205 mL $\times \frac{1}{1000}$ L/mL = 4188790.205 L

The capacity of the tank is 4188790 L, to the nearest litre.