Chapter Review

1. Calculate the volume of each object.
a)

b)

c)

$$
\begin{aligned}
V & =\left(A_{\text {base }}\right)(h) \\
& =\left[\frac{8(3.9 \mathrm{~m})(3.2 \mathrm{~m})}{2}\right](2 \mathrm{~m}) \\
& =99.84 \mathrm{~m}^{3},
\end{aligned}
$$

or about $100 \mathrm{~m}^{3}$

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(6 \mathrm{in} .)^{2}(1 \mathrm{in} .) \\
& =113.097 \ldots \mathrm{cu} \mathrm{in.,} \\
& \quad \text { or about } 113 \mathrm{cu} \mathrm{in.}
\end{aligned}
$$

$V=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi(5 m)^{2}(12 \mathrm{~m})
$$

$$
=314.159 \ldots \mathrm{~m}^{3},
$$

$$
\text { or about } 314 \mathrm{~m}^{3}
$$

2. This cylindrical storage tank has a volume of $750.7 \mathrm{~m}^{3}$. The tank has a height of 11.8 m . What is its radius to the nearest tenth of a metre?

$$
\begin{aligned}
\text { e.g., } V & =\pi r^{2} h \\
750.7 \mathrm{~m}^{3} & =\pi r^{2}(11.8 \mathrm{~m}) \\
750.7 \mathrm{~m}^{3} & =(37.070 \ldots \mathrm{~m}) r^{2} \\
750.7 \mathrm{~m}^{3} \div 37.070 \ldots \mathrm{~m} & =(37.070 \ldots \mathrm{~m}) r^{2} \div 37.070 \ldots \mathrm{~m} \\
20.250 \ldots \mathrm{~m}^{2} & =r^{2} \\
\sqrt{20.250 \ldots} & =r \\
4.500 \ldots & =r
\end{aligned}
$$

The radius of the tank is 4.5 m , to the nearest tenth of a metre.
3. Determine the volume of the square pyramid.

$$
\text { e.g., } \begin{aligned}
V_{A} & =\frac{1}{3}\left(A_{\text {base }}\right)(h) \\
& =\frac{1}{3}(3 \mathrm{~m})^{2}(2 \mathrm{~m}) \\
& =6 \mathrm{~m}^{3}
\end{aligned}
$$

4. Create a problem where you need to determine the volume of an object measured in cubic feet.
e.g., Determine the volume of a stack of solid bricks that is 4 ft tall, 2 ft wide, and 3 ft long.
5. Determine the volume of each composite object.
a)

$$
\begin{aligned}
V & =l w h_{1}+\left(\frac{b h_{2}}{2}\right)\left(h_{1}\right) \\
& =(3 \mathrm{~m})(2 \mathrm{~m})(7 \mathrm{~m})+\left[\frac{(3 \mathrm{~m})(1 \mathrm{~m})}{2}\right](7 \mathrm{~m})
\end{aligned}
$$

$$
=52.5 \mathrm{~m}^{3}, \text { or about } 53 \mathrm{~m}^{3}
$$

b)

$$
\begin{aligned}
V & =l w h_{1}+\frac{1}{3}\left(A_{\text {base }}\right)\left(h_{2}\right) \\
& =(5 m)(5 m)(2 m)+\frac{1}{3}(5 m)^{2}(9 m) \\
& =125 \mathrm{~m}^{3}
\end{aligned}
$$

6. Martina says that if you triple the inner radius of a cylindrical container and keep the height the same, its capacity will also triple. Is she correct? Use an example in your explanation.
No. e.g., Its capacity will increase by a factor of 9 .

$$
\begin{aligned}
V_{\text {original }} & =\pi r^{2} h \\
V_{\text {new }} & =\pi(3 r)^{2} h \\
& =9 \pi r^{2} h
\end{aligned}
$$

7. A spherical gas storage tank has an inner radius of 10 m .

Determine its capacity, to the nearest litre.
e.g., $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi(1000 \mathrm{~cm})^{3} \\
& =4188790205 \mathrm{~cm}^{3}, \text { or } 4188790205 \mathrm{~mL}
\end{aligned}
$$

$4188790205 \mathrm{~mL} \times \frac{1}{1000} \mathrm{~L} / \mathrm{mL}=4188790.205 \mathrm{~L}$
The capacity of the tank is 4188790 L , to the nearest litre.

