Chapter Review

1. Explain what you think this road sign means.
e.g., The grade is 18%. Every 100 m of horizontal distance drops a vertical distance of 18 m .
2. Baldwin Street in Dunedin, New Zealand, is one of the steepest streets in the world.

- The street runs for a horizontal distance of 350 ft .
- It rises from 30 ft to 153 ft over this distance.

What is the grade of Baldwin Street?
e.g., $\frac{153 \mathrm{ft}-30 \mathrm{ft}}{350 \mathrm{ft}} \times 100 \%=0.351 \ldots \%$, or about 35% The grade is about 35%.
3. Graph each line.
a) $(3,4), m=2: 3$
b) $(-2,5), m=-1: 4$
4. a) What is the slope of the line segment that joins the points?

$$
\begin{array}{rlrl}
A(5,-8) \text { to } B(-6,-14) & C(2,1) \text { to } D(4,7) \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-14-(-8)}{-6-5} & & =\frac{7-1}{4-2} \\
& =\frac{-6}{-11}, \text { or } \frac{6}{11} & & =\frac{6}{2}, \text { or } 3
\end{array}
$$

b) Which line segment in Part a) is steeper? Explain.
$C D$ is steeper. e.9., Its slope is 3 . That is greater than the slope of $A B$.
5. Explain how $\frac{\text { rise }}{\text { run }}$ and $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ both represent the slope formula.
e.g., Rise is the vertical distance or the change between y-values.

Run is the horizontal distance or the change between x-values.
6. Ayaka is a real estate agent. She sold a house for $\$ 190000$. It sold for $\$ 26800011 \mathrm{yr}$ later. What is the average rate of change in price, to the nearest dollar?
e.g., $\frac{\$ 268000-\$ 190000}{11 \mathrm{yr}-0 \mathrm{yr}} \doteq \$ 7091 / \mathrm{yr}$

The average rate of change was $\$ 7091 / \mathrm{yr}$, to the nearest dollar.
7. Suppose the price of the house in Question 6 continues to rise at the same rate. What would it be worth in 5 yr ?
e.g., $\$ 7091 \times 5+\$ 268000=\$ 303455$ It would be worth $\$ 303455$ in 5 yr .
8. Ruth is a surveyor. She is using a sight to measure the height of a cliff. What is the height of the cliff, to the nearest metre?

$$
\begin{aligned}
\text { e.g., } \tan 36^{\circ} & =\frac{x}{145 m} \\
145 m \times \tan 36^{\circ} & =145 m \times \frac{x}{145 m} \\
105.348 \ldots m & =x \\
\text { Height: } 105.348 \ldots m+1.5 m & =106.848 \ldots m
\end{aligned}
$$

The height of the cliff is about 107 m .
9. Hayvn is conducting a science experiment. He plotted the following data. What is the rate of change for each section? What does each rate of change mean?
Section A: $0^{\circ} \mathrm{C} / \mathrm{min}$; no change in temperature
Section B: $-2^{\circ} \mathrm{C} / \mathrm{min}$; temperature decreases by $2^{\circ} \mathrm{C} / \mathrm{min}$
Section C: $8^{\circ} \mathrm{C} / \mathrm{min}$; temperature increases by $8^{\circ} \mathrm{C} / \mathrm{min}$

10. Earth rotates at about $465 \mathrm{~m} / \mathrm{s}$ at the equator.
a) What is this speed in kilometres per hour?
e.g., $465 \mathrm{~m} / \mathrm{s} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=1674 \mathrm{~km} / \mathrm{h}$

Earth rotates at about $1674 \mathrm{~km} / \mathrm{h}$ at the equator.
b) What is this speed in miles per hour?

e.g., $1674 \mathrm{~km} / \mathrm{h} \times \frac{1 \mathrm{mi}}{1.61 \mathrm{~km}}=1039.751 \ldots \mathrm{mi} / \mathrm{h}$

Earth rotates at about $1040 \mathrm{mi} / \mathrm{h}$ at the equator.

