Chapter Review

1. a) Create an isometric drawing of this object.

e.9.,

b) Draw the front, top, and right-side views of the object in Part a).
e.9.,

2. Create an isometric drawing of the object shown in these views.

top

front

right side
e.g., •

3. Make a one-point perspective drawing of this cube structure.

e.9.,

4. Draw an exploded view of this garage.

5. A scale on a map of Nunavut shows that 2 cm on the map represents 15 km .
a) What is the scale ratio on this map?

$$
\begin{aligned}
2 \mathrm{~cm} & =0.02 \mathrm{~m} \quad 15 \mathrm{~km}=15000 \mathrm{~m} \\
\text { e.g., } \frac{0.02}{15000} & =\frac{2}{1500000}, \text { or } 1: 750000
\end{aligned}
$$

b) What is the scale factor? What does it mean?
e.g., The scale factor is 750000 . That means a distance on the map is multiplied by 750000 to determine the actual distance on land.
c) The distance between Brandon and Winnipeg is 200 km . What is this distance on the map?
e.9., $200 \mathrm{~km}=200000 \mathrm{~m}$, or 20000000 cm
6. e.g.,

7. a) e.g.,

$20000000 \mathrm{~cm} \times \frac{1}{750000}=26.666 \ldots \mathrm{~cm}$
The distance on the map is about 27 cm .
6. This cube structure was made using 1 cm linking cubes. Use grid paper. Draw a $2: 1$ scale diagram of the top, front, and right-side views.
7. a) A cylindrical gas storage tank has a diameter of 12.0 m . Its height is 16.0 m . Use technology. Draw a scale diagram of the top and front views of the tank.

b) How might someone use a scale drawing of a gas storage tank?
e.9., Someone might be designing a different storage tank and want to compare the design with a scale diagram of one they have.

